Ruggedized Multimode Fiber Optic Switch

TYPICAL APPLICATIONS

- FDDI LANs
- Local area network (LAN) bypass switching
- Loopback diagnostic testing
- Ring networks
- Test sets
- Tactical platforms (ships, aircraft, etc.)

FEATURES

- FO4663R switch direct replacement
- FDDI compatible
- SAFENET compatible
- Fail-safe operation
- Built-in loss for loopback testing
- High reliability
- Bidirectional
- Low insertion loss
- MIL-S-901D (hard or shock mounted)
- MIL-S-1344A vibration
- Low power: $5 \mathrm{Vdc}, 70 \mathrm{~mA}$ nominal
- Switching time <15 ms
- 62.5/125 $\mu \mathrm{m}$ fiber standard
- Low weight: 3.2 oz
- Stand alone package (see back for details)
- Variety of cable and connector options
- Environmentally rugged construction

The FO4665 switch is a form, fit and functional replacement for the highly regarded FO4663R ruggedized multimode switch. Improvements to the switch housing simplifies the manufacturing process, resulting in a more affordable product.

The multimode 2×2 moving-mirror optical bypass switch meets all the requirements of the FDDI Physical Medium Dependent (PMD) standard and SAFENET specifications for fiber optic data network applications. The highly reliable performance of the device is made possible by its unique silicon micromachine based switch design. A sealed, ruggedized housing isolates the optical components from external shock and vibration effects.

The standard switch has $62.5 / 125 \mu \mathrm{~m}$ multimode fiber pigtails that can be ordered with various customer option cables and connectors. Other fiber core sizes are also available.

For more information about our entire line of fiber optic products, please visit our web site at www.moog.com.

SPECIFICATIONS

	Symbol	Min	Typ	Max	Unit
Environmental Ratings					
Operating Temperature Range	T_{C}	-30	-	85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-62	-	85	${ }^{\circ} \mathrm{C}$
Humidity	-	-	-	95	\% RH
Mechanical Life	-	1.0	-	-	M cycle
Milit-S-901					
Shock Standards	MIL-STD1344				
Vibration					
Characteristics	-	4.75	5.0	5.5	Vdc
Actuation Voltage	I	-	70	90	mA
Actuation Current	$\mathrm{T}_{\text {SI }}$	-	-	15.0	ms
Insertion Time	T_{MI}	-	-	5.0	ms
Media Interruption Time	-	-	0.7	0.8^{*}	dB
Active Loss* 1-3 port	-	-	0.7	0.8^{*}	dB
Bypass Loss* 3-4 port	-	-	0.7	0.8^{*}	dB
Active Loss* 2-4 port	-	-	-	6.0	dB
Self-test Loss* 1-2 port	-	60	-	-	dB
Active Crosstalk	-	60	-	-	dB
Bypass Crosstalk	λ	1270	1320	1380	nm
Operating Wavelength					

PART NUMBERING

-

BASIC PART NUMBER

FIBER

CODE	SIZE	INDEX	NA
A	$50 / 125$	GRADED	.20
${ }^{* * B}$	$62.5 / 125$	GRADED	.28
${ }^{* *} \mathrm{C}$	$100 / 140$	GRADED	.29

JACKET	
CODE	STYLE
1	$900 \mu \mathrm{~m}$ Teflon tube
3	3 mm (Standard) Low smoke/no Halogen
5	2 mm Low smoke/no Halogen

Example:

PIGTAIL LENGTH

Enter 3 digit code representing the length in centimeters ($+10 /-00 \mathrm{~cm}$). Maximum length equals 300 cm , for greater lengths and tighter tolerances please consult factory. Minimum length equals 15 cm .

CONNECTOR	
CODE	STYLE
OO	None
SM	SMA 906
95	SMA 905
ST	ST
FC	FC
SC	SC

FO4665-B3ST-100

This is a standard $62.5 / 125 \mu \mathrm{~m}$ fiber switch hard mounted with a 3 mm low smoke/no halogen jacket. The pigtail length is $100 \mathrm{~cm}(+10,-0) \mathrm{cm}$, terminated with ST connectors.

All dimensions are in inches (millimeters).

TYPICAL BYPASS SWITCH APPLICATIONS

A. Operate State (Power On)

B. Bypass State (Power Off)

Figure 1. FDDI Single-Switch Application

A. Operate State (Power On)

B. Bypass State (Power Off)

